skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goddard, Thomas D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens inC. elegansto discover a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. DeletingC. elegansERGU-1 causes excessive H2O2and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behavioral responses to H2O2. BothC. elegansand human ERGU-1 proteins localize to ER membranes and form network reticulum structures. Human andDrosophilahomologs of ERGU-1 can rescueC. elegansmutant phenotypes, demonstrating evolutionarily ancient and conserved functions. In addition, purified ERGU-1 and human homolog TMEM161B exhibit redox-modulated oligomeric states. Together, our results reveal an ER-membrane-specific protein machinery for peroxide detoxification and suggest a previously unknown and conserved mechanisms for antioxidant defense in animal cells. 
    more » « less